If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30d^2-20d-10=0
a = 30; b = -20; c = -10;
Δ = b2-4ac
Δ = -202-4·30·(-10)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-40}{2*30}=\frac{-20}{60} =-1/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+40}{2*30}=\frac{60}{60} =1 $
| 5(x+4)=3*(x-3)+5 | | 15x-24=1/2x+5 | | -48-12x=62-7x | | 3(0.5)+2y=3 | | 4x-12+52=18 | | 4x+-12+52=180 | | -4+3a=7(a+4)-8 | | m/7=9/7 | | -2/3(m+6)=10 | | 3x=4x-8/5 | | x/2+98=100 | | 124=62/x | | 9-4x=-5 | | 6=(3x-5x) | | 6-2x=6x-30+4x | | 12*k=96 | | 10+3x=2(3+4x)+5 | | 10x-3x=96=10x+51 | | 3x=5-2(3+4x) | | 5(x-30=10(x-4) | | 3x=5+2(3+4x) | | 10x-3x+96=10x+52 | | x^2=105-8x | | 4x7=4 | | 4(y-2)=2(y+1) | | 4.5n=-67.5 | | 7.25x=-101.5 | | 7.25x=101.5 | | 4/5÷4/5=x | | m+5(2m-3=-3 | | 1/3(x+726)=1632 | | 14=-5+c |